简介 - 量子霍尔状态的特点是它们对运输系数的精确量化,例如霍尔电导率[1],它反映了系统的拓扑不变性。除了电导率之外,已经确定了对托型和几何形状之间相互作用的更深入的见解。其中,大厅的粘度已成为一个关键的几何传输系数,在绝热变化对系统度量的变化下捕获了量子霍尔状态的响应[2-4]。在二维系统中,如果该区域保持恒定,则此类度量变形等同于复杂结构的变化,对于圆环而言,该模块参数τ=τ=τ1 +iτ2,用τ∈H和h,每半平面上升。因此,霍尔粘度可以理解为复杂结构模量空间上的浆果曲率,该曲率控制了量子霍尔态对τ绝热变形的响应。这种联系是在Avron,Seiler和Zograf [2]的开创性工作中首次建立的,将其与量子霍尔状态的固有几何形状联系在一起。重要的是,相应的无耗散传输系数ηh是由与此曲率相关的第一个Chern数进行量化和确定的[5]。这种洞察力不仅强调了大厅的粘度是二维间隙系统的重要特征,从而破坏了时间反转对称性,而且将其定位为基本的拓扑不变性,以补充霍尔电导率。在[5]中,对几何绝热转运的概念进行了扩展,以对较高属(g> 1)的表面进行,并引入了一种新型的运输系数,即中央电荷[6,7],这是由重力异常引起的。此central电荷量化了量子霍尔对几何变形的普遍响应,将其链接到拓扑和保形场理论不变性。
主要关键词